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IMPORTANCE Cardiometabolic disease is responsible for decreased longevity and poorer
cardiovascular outcomes in the modern era. Metabolite profiling provides a specific measure
of global metabolic function to examine specific metabolic mechanisms and pathways of
cardiometabolic disease beyond its clinical definitions.

OBJECTIVES To define a molecular basis for cardiometabolic stress and assess its association
with cardiovascular prognosis.

DESIGN, SETTING, AND PARTICIPANTS A prospective observational cohort study was
conducted in a population-based setting across 2 geographically distinct centers (Boston
Puerto Rican Health Study [BPRHS], an ongoing study of individuals enrolled between June 1,
2004, and October 31, 2009; and Atherosclerosis Risk in Communities [ARIC] study, whose
participants were originally sampled between November 24, 1986, and February 10, 1990,
and followed up through December 31, 2017). Participants in the BPRHS were 668 Puerto
Rican individuals with metabolite profiling living in Massachusetts, and participants in the
ARIC study were 2152 individuals with metabolite profiling and long-term follow-up for
mortality and cardiovascular outcomes. Statistical analysis was performed from October 1,
2018, to March 13, 2020.

EXPOSURE The primary exposure was metabolite profiles across both cohorts.

MAIN OUTCOMES AND MEASURES Outcomes included associations with multisystem
cardiometabolic stress and all-cause mortality and incident coronary heart disease (in the
ARIC study).

RESULTS Participants in the BPRHS (N = 668; 491 women; mean [SD] age, 57.0 [7.4] years;
mean [SD] body mass index [calculated as weight in kilograms divided by height in meters
squared], 32.0 [6.5]) had higher prevalent cardiometabolic risk relative to those in the ARIC
study (N = 2152; 599 African American individuals; 1213 women; mean [SD] age, 54.3 [5.7]
years; mean [SD] body mass index, 28.0 [5.5]). Multisystem cardiometabolic stress was
defined for 668 Puerto Rican individuals in the BPRHS as a multidimensional composite of
hypothalamic-adrenal axis activity, sympathetic activation, blood pressure, proatherogenic
dyslipidemia, insulin resistance, visceral adiposity, and inflammation. A total of 260
metabolites associated with cardiometabolic stress were identified in the BPRHS, involving
known and novel pathways of cardiometabolic disease (eg, amino acid metabolism, oxidative
stress, and inflammation). A parsimonious metabolite-based score associated with
cardiometabolic stress in the BPRHS was subsequently created; this score was applied to
shared metabolites in the ARIC study, demonstrating significant associations with coronary
heart disease and all-cause mortality after multivariable adjustment at a 30-year horizon (per
SD increase in metabolomic score: hazard ratio, 1.14; 95% CI, 1.00-1.31; P = .045 for coronary
heart disease; and hazard ratio, 1.15; 95% CI, 1.07-1.24; P < .001 for all-cause mortality).

CONCLUSIONS AND RELEVANCE Metabolites associated with cardiometabolic stress identified
known and novel pathways of cardiometabolic disease in high-risk, community-based
cohorts and were associated with coronary heart disease and survival at a 30-year time
horizon. These results underscore the shared molecular pathophysiology of metabolic
dysfunction, cardiovascular disease, and longevity and suggest pathways for modification to
improve prognosis across all linked conditions.
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D espite ongoing efforts in the prevention of cardiovas-
cular disease, recent reports suggest a relative pla-
teau in mortality owing to major cardiometabolic

diseases (CMD) and cardiovascular diseases (CVD).1 Cardio-
metabolic disease is recognized as a shared risk factor for both
cardiovascular and noncardiovascular morbidity, predating
neurocognitive, renal, cardiovascular, and functional de-
cline. These observations have been distilled into clinical pre-
vention guidelines and definitions (eg, metabolic syndrome).
Nevertheless, for therapeutic discovery, these constructs are
based on clinical phenotypes (eg, blood pressure and lipid lev-
els), lacking resolution for the molecular components of meta-
bolic homeostasis that may pinpoint specific, mutable path-
ways relevant to CVD. This limitation becomes especially
important at the extremes of clinical risk, where earlier detec-
tion and more specific metabolic biomarkers may be relevant
to defining the hazard of CMD in association with CVD over a
longer time horizon.

Our primary hypothesis was that circulating metabolites
associated with a composite marker of cardiometabolic (CM)
stress would identify underlying pathways relevant to CVD
and survival and would be associated with these outcomes
across 2 racially diverse cohorts at high prevalent CMD risk.
We first studied 668 Puerto Rican adults in the Boston Puerto
Rican Health Study (BPRHS) with metabolite profiling to
identify molecular correlates and pathways of a validated,
multiparametric clinical index of CM stress based on known
and emerging CMD traits. We derived a metabolite-based
score from this clinical index and subsequently applied the
metabolite-based score to a separate cohort of 2152 partici-
pants in the Atherosclerosis Risk in Communities (ARIC)
study to investigate its association with the development of
long-term coronary heart disease (CHD) and all-cause mortal-
ity over 30 years independent of sex, race/ethnicity, and
clinical CMD traits. Our ultimate goal was to define a molecu-
lar metabolic basis for CMD in 2 high-risk populations, under-
stand the potential pathways implicated, and identify
whether the implicated metabolites would help us to identify
individuals at risk for CVD and mortality over a long horizon
in large, multiethnic populations.

Methods
Cohort Description
Boston Puerto Rican Health Study
The BPRHS is an ongoing longitudinal study of 1499 individu-
als enrolled between June 1, 2004, and October 31, 2009, that
sought to examine stress, nutrition, and CVD outcomes in
Puerto Rican immigrants in the Boston area. The design of the
overall study has been previously published.2 In brief, eli-
gible participants were of self-identified Puerto Rican de-
scent, able to answer questions in English or Spanish, 45 to 75
years of age, and living in the Boston, Massachusetts, area at
study enrollment. Detailed survey methods have been
reported2 (eAppendix in the Supplement). Blood samples were
collected for biochemical measures after a 12-hour fast (dehy-
droepiandrosterone sulfate, hemoglobin A1c, C-reactive pro-

tein, a lipid panel, and glucose), and a 12-hour urine collection
was performed for urinary epinephrine and norepinephrine lev-
els. The BPRHS cohort study procedures were approved by
the Tufts Medical Center Institutional Review Board. The
current BPRHS data analysis was approved by the University
of Massachusetts Lowell and Massachusetts General Hospital
Institutional Review Boards.

Our construction of an analytic cohort is shown in eFig-
ure 1 in the Supplement. Of the 1499 individuals in the base-
line study visit, 817 individuals had metabolite profiling
performed. The metabolite profiling was performed on ar-
chived plasma at 2 different times (“technical runs”; run 1,
n = 736; run 2, n = 81). We focused on the 736 study partici-
pants, with their samples performed on the same platform to
reduce technical variability. Among these, a subset of the 736
samples for metabolite profiling in the BPRHS was selected for
other purposes as part of a case-control study for diabetes (120
cases and 120 controls without diabetes), and the remainder
were randomly selected. After exclusion for missing clinical
covariates (age, sex, body mass index [BMI], smoking status,
and CM stress index) and metabolites with high missingness
(>25%), 668 participants with 719 metabolites comprised our
final analytic cohort.

ARIC Study
The ARIC study is a prospective cohort study of 15 792 indi-
viduals, originally sampled between November 24, 1986, and
February 10, 1990. The detailed design of the ARIC study has
been previously published.3 The ARIC study participants were
45 to 64 years of age from 4 US communities (Forsyth County,
North Carolina; Jackson, Mississippi; suburbs of Minneapo-
lis, Minnesota; and Washington County, Maryland) and
underwent collection of standard demographic, clinical, and
biochemical measures. Clinical measures included vital signs
and anthropometric indices,3 lipid profiles,4-6 and glomeru-
lar filtration rate7 (eAppendix in the Supplement). Our ana-
lytic cohort consisted of 2152 participants with metabolites
measured in 2014 from serum stored at a study visit during the
period from 1987 to 1989, as well as CHD and mortality fol-
low-up information and necessary covariates. Our primary out-

Key Points
Question Can the circulating metabolome identify individuals
with high cardiometabolic stress across multiple physiological
systems who are at risk for long-term complications of
cardiovascular disease?

Findings In 2 distinct cohorts spanning more than 3000
individuals, a metabolite-based signature of systemic
cardiometabolic stress (defined by clinical phenotypes) was
defined, and its association with long-term all-cause mortality and
coronary heart disease risk over nearly 30 years, independent of
traditional risk factors, was demonstrated.

Meaning These results underscore the shared molecular
pathophysiology of metabolic dysfunction, cardiovascular disease,
and survival and suggest pathways for modification to improve
prognosis across all linked conditions.
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comes were CHD and all-cause mortality. In the ARIC study,
prevalent CHD at baseline was defined as a self-reported his-
tory of physician-diagnosed myocardial infarction, coronary
artery bypass surgery, or coronary angioplasty or electrocar-
diogram evidence of a previous myocardial infarction. Preva-
lent CVD was defined as evidence of prior CHD, heart failure,
or stroke. Incident CHD was defined as definite fatal CHD and
definite or probable myocardial infarction that occurred on or
before December 31, 2017. The cases were identified and ad-
judicated using information from study visits, interviews, an-
nual follow-up calls, hospital discharge lists, medical rec-
ords, and death certificates.8 Only 1947 (of 2152) participants
without prevalent CHD (and with CHD follow-up and all co-
variates available for adjustment) at the baseline examina-
tion were included in incident CHD models. The vital status
for each individual was followed from the baseline visit until
death, loss to follow-up, or administrative censoring at De-
cember 31, 2017. Of the overall 2152 individuals, 2076 were in-
cluded in mortality models with all covariates available for
adjustment.

Metabolite Profiling
Metabolite profiling was performed at a commercial facility
(Metabolon Inc) using proprietary procedures.9 For the BPRHS,
the Metabolon metabolomics platform uses liquid chroma-
tography–mass spectrometry methods with positive ion and
negative ion modes (eAppendix in the Supplement). Metabo-
lites sampled across 4 modes were detected: (1) acidic posi-
tive ion (optimized for hydrophilic molecules), (2) acidic posi-
tive ion (optimized for hydrophobic molecules), (3) basic
negative ion, and (4) negative ionization from eluent of a HILIC
(hydrophilic interaction liquid chromatography) column. Raw
data were extracted and peaks identified using proprietary
methods, with more than 3300 commercially available puri-
fied molecules as reference. Metabolites without specific
chemical annotation were also detected. The relative metabo-
lite concentration was reported as a normalized area under the
curve value for each metabolite. Missing values were im-
puted as 50% of the minimal value across all participants, and
metabolites were subsequently log2-transformed and stan-
dardized (to mean, 0; variance, 1) for entry into analysis. Meth-
ods for the BPRHS (from Metabolon) are reported in the eAp-
pendix in the Supplement.

For the ARIC study validation cohort (performed earlier
than the BPRHS metabolomics), gas chromatography was used
in addition to liquid chromatography for several platforms. The
details of metabolite profiling in the ARIC study have been pub-
lished elsewhere for reference.10 The median relative SD for
internal standards was 2% for the ARIC study and 5% for the
BPRHS, with total process variability of 10% or less. Recent con-
sortium reports for Metabolon’s platform in other samples have
reported a median coefficient of variation of 14.6% across rep-
licates for known metabolites, with a median coefficient of
variation of 29% from day to day.11

Definition of CM Stress in the BPRHS
The index of CM stress used here has been previously vali-
dated in the BPRHS as a marker of multisystem metabolic stress

associated with disease (Table 1).2 The stress index compre-
hensively quantifies metabolic, inflammatory, and neurohor-
monal states across multiple dimensions: (1) hypothalamus-
adrenal axis (serum dehydroepiandrosterone sulfate and

Table 1. Definition of Cardiometabolic Stress Index and Its 9 Components
in the Boston Puerto Rican Health Study

Criteriaa Definition
Blood pressure and
antihypertensive medication
use

0 SBP ≤140 mm Hg, DBP ≤90 mm Hg, and no
antihypertensive medication use reported

1 All others

2 SBP >140 mm Hg and DBP >90 mm Hg

Waist circumference

0 Other

1 >102 cm for Male patients; >88 cm for
female patients

Dyslipidemia or use of
medications for lipids

0 HDL-C ≥40 mg/dL, total cholesterol <240
mg/dL, and no antilipidemic medications
reported

1 All others

2 HDL-C <40 mg/dL and total cholesterol ≥240
mg/dL (regardless of medication) or HDL-C
<40 mg/dL and total cholesterol ≤240 mg/dL
with medication use

HbA1c and antidiabetes
medication use

0 HbA1c ≤7% and no antidiabetes medication
use reported

1 HbA1c >7% or antidiabetes medication use
reported

Urinary cortisol

0 <41.5 μg/g Creatinine for male patients or
<49.5 μg/g creatinine for female patients

1 All others

Urinary epinephrine

0 <2.8 μg/g Creatinine for male patients or
<3.6 μg/g creatinine for female patients

1 All others

Urinary norepinephrine

0 <30.5 μg/g Creatinine for male patients or
<46.9 μg/g creatinine for female patients

1 All others

Serum DHEA-S

0 All others

1 ≤589.5 ng/mL or Taking androgens for male
patients or ≤368.5 ng/mL or taking
androgens for female patients

C-reactive protein

0 All others

1 >3 mg/L

Abbreviations: DHEA-S, dehydroepiandrosterone sulfate; DBP, diastolic blood
pressure; HbA1c, hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol;
SBP, systolic blood pressure.

SI conversion factors: To convert total cholesterol and HDL-C to millimoles per
liter, multiply by 0.0259; HbA1c to proportion of total hemoglobin, multiply
by 0.01.
a Components are given a score of 0, 1, or 2, which are then summed across all 9

components to generate a score from 0 to 11 that reflects cardiometabolic
stress. All medication use was self-reported. Blood pressures and waist
circumference were the mean of multiple measurements.
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urinary cortisol levels), (2) sympathetic activation (12-hour
urinary norepinephrine and epinephrine levels), (3) vascular
dysfunction (blood pressure), (4) proatherogenic dyslipid-
emia, (5) insulin resistance or type 2 diabetes, (6) visceral
adiposity, and (7) inflammation (C-reactive protein levels).
Use of medications for type 2 diabetes, hypertension, or
dyslipidemia was incorporated into this index. Each compo-
nent was parameterized into a 0-point to 1-point scale or a
0-point to 20-point scale and summed to generate the final
systemic CM stress index.12 The operating characteristics for
biochemical assays used in the prescription of this index
(urinary and plasma or serum biomarkers) have been previ-
ously reported, and the study-specific cutoffs for these bio-
chemical measures have been prescribed by previous work
in the BPRHS.2

Statistical Analysis
Identification of Metabolites Associated With the CM Stress Index
Statistical analysis was performed from October 1, 2018, to
March 13, 2020. After filtering and imputation, metabolites
were subsequently log-transformed and then mean-centered
and standardized (to mean, 0; variance, 1). We measured the
association of the CM stress index as a function of each
metabolite, adjusted for age, sex, BMI, and ever smoking
status in separate linear models. We adjusted for multiple
hypothesis testing across all models using the Benjamini-
Hochberg false discovery rate threshold of 5%, finding 260
metabolites significantly associated (false discovery rate
threshold <0.05) with the CM stress index (BPRHS; eFig-
ure 1 in the Supplement).

Pathway Analysis
To provide an analysis of molecular pathways relevant to
CVD based on CM stress, we identified genes whose protein
products were along the enzymatic pathways of top CM
stress–associated metabolites and performed a comprehen-
sive pathway analysis on these genes. Of the 260 metabo-
lites, 124 were annotated with KEGG Compound identifica-
tion (ID) numbers using MetaboAnalyst.13 Using these ID
numbers as a query set, we next constructed a network of
metabolic pathways consisting of 375 metabolites, 300 reac-
tion nodes, 210 enzyme classes, 427 genes, and 1563 interac-
tions using the MetScape app14 in Cytoscape.15 Using the
RCy3 package for R-Cytoscape scripting, we interrogated the
network to identify sets of genes linked to metabolites asso-
ciated with CM stress.16 We assigned minimum, mean, and
maximum β coefficient values to each pathway gene based
on its connectivity to analyzed metabolites via the enzyme-
metabolite interactions curated by MetScape. These values
were used to define metabolically harmful and metabolically
healthy gene sets (eg, genes having a positive-maximum and
negative-minimum metabolite-associated β coefficient
value, respectively). These genes were used to perform a
pathway analysis using WikiPathways17 via the clusterProfiler
R package.18 In addition to the typical caveats for pathway
analysis as a strictly exploratory method, the mapping from
metabolites to genes via incomplete and continually updated
databases may introduce bias.

Construction of Metabolite-Based Score Reflecting
CM Stress (BPRHS)
From 260 metabolites associated with the CM stress index in
the BPRHS, 125 metabolites were commonly expressed with
the ARIC study (matched by Metabolon chemical ID number,
Human Metabolome Database ID, mass, and/or name) and ex-
pressed in more than 75% of the ARIC study participants. We
used elastic net regression in the BPRHS to create a metabolite-
based CM stress score based on the clinical CM stress index as
a function of age, sex, and the 125 common metabolites. Se-
lection of α and λ parameters was optimized by 10-fold cross-
validation (with 5 repeats), and age and sex were not penal-
ized in regressions (using caret in R [R Foundation for Statistical
Computing]). Data from the BPRHS were used to construct the
score, with the knowledge that external validation against
outcomes in the ARIC study would mitigate overfitting of the
metabolite-based score in the BPRHS. To achieve maximal
parsimony in constructing the score, we ranked all 125
metabolites by calculating the variable importance in the
elastic net and specified successive linear models for the
clinical CM stress index in the BPRHS as a function of age,
sex, and increasing number of metabolites (with initial mod-
els including the most important metabolites). The predictive
ability of linear models was assessed in 10-fold cross-
validation (5 repeats). We plotted the cross-validated model
R2 and variable importance as a function of sets of metabo-
lites to determine the minimal number of metabolites neces-
sary to optimize model fit. We report the 30-metabolite
model in the ARIC study for parsimony.

Survival Analysis for 30-Year CHD and Mortality (ARIC Study)
For the ARIC study, imputation of below-detection values was
done as in the BPRHS, and metabolites were log-trans-
formed, mean-centered, and standardized for analysis. Cox
proportional hazards regression models were constructed for
CHD and all-cause mortality as a function of metabolite-
based CM stress score. Survival analysis included 2 models:
model 1 comprised age, sex, and race/ethnicity adjusted for cen-
ter, and model 2 comprised all the factors in model 1, with
added adjustment for traditional risk factors (smoking sta-
tus, systolic blood pressure, use of medications for hyperten-
sion, diabetes status, total cholesterol, high-density lipopro-
tein cholesterol, and estimated glomerular filtration rate for
incident CHD analysis). All-cause mortality analysis was fur-
ther adjusted for BMI and prevalent CVD. For CHD, we per-
formed a sensitivity analysis, including the Pooled Cohort
Equations risk as defined19 and examining the association of
CM stress score and CHD adjusted for center, sex, and Pooled
Cohort Equations score. The Cox proportional hazards regres-
sion assumption was assessed by visual inspection of re-
sidual plots and by inclusion of time by metabolomic score lin-
ear interaction terms (with interaction P > .05 indicating no
violation of proportionality). Effect modification by sex was
assessed. We calculated the mean value and 95% CI of the area
under the curve with 10-fold cross-validation with 100
replicates.20 The net reclassification index and integrated dis-
crimination improvement were calculated as described.21,22 All
statistical analyses were performed using R, version 3.5.2 or
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SAS, version 9.4 (SAS Institute Inc). A 2-tailed P < .05 was con-
sidered statistically significant, with adjustments for type I er-
ror as specified.

Results
Cohort Characterization
Characteristics of the BPRHS and ARIC study subsamples in-
cluded in this analysis are shown in Table 2. The BPRHS
subsample (n = 668) had a mean (SD) age of 57.0 (7.4) years and
included 491 women (73.5%). The mean (SD) BMI was 32.0 (6.5)
(calculated as weight in kilograms divided by height in me-
ters squared), and most of the cohort was at high prevalent CM
risk: 345 participants (51.6%) had a diagnosis of diabetes, 469
(70.2%) had a diagnosis of hypertension, and 432 (64.7%) had
a diagnosis of dyslipidemia. The 2152 ARIC study partici-
pants (599 African American individuals and 1553 European
American individuals) had a similar age distribution to the
BPRHS (mean [SD] age, 54.3 [5.7] years) but with a smaller pro-
portion of women (1213 [56.4%]) and with lower CM risk, in-
cluding a lower mean (SD) BMI (28.0 [5.5]) and more favor-
able lipid profile and blood pressure.

Molecular Pathways of CM Stress
After adjustment for age, sex, BMI, and smoking status, we
found 260 metabolites significantly associated with CM stress
(eTable 1 in the Supplement). The identified metabolites fit
broadly into 3 major categories: (1) those with a previously re-
ported association with CVD, diabetes, or longevity (eg, glu-
tamate, taurine, isoleucine, valine, 2-aminoadipate, and aconi-
tate); (2) those associated with diseases specified in the CM

stress definition (eg, glucose, cholesterol, androgens, and cat-
echolamine intermediates); and (3) several novel biomol-
ecules (mainly lipids) not commonly described as functional
biomarkers of inflammation or CVD. We next used experimen-
tally defined metabolite-enzyme interactions from MetScape14

to identify enriched pathways of CM stress from WikiPath-
ways (Figure 1). Pathways shared across both metabolically
harmful and metabolically healthy gene sets included amino
acid metabolism, Ras signaling, eicosanoid synthesis, and the
Nrf2 pathway.

Construction of Metabolite-Based CM Stress Score
We trained an elastic net model (as specified in the Methods)
for the CM stress index as a function of 125 metabolites that
were matched between the ARIC study and the BPRHS, with
a 10-fold cross-validation approach (5 repeats) for specifica-
tion of the α and λ parameters (eTable 2 in the Supplement,
ranked by variable importance). To obtain a parsimonious
model that optimized the association with CM stress in the
BPRHS (derivation cohort), we next conducted a series of lin-
ear regressions for the CM stress index, including succes-
sively more metabolites (ordered by variable importance) in
each age-adjusted and sex-adjusted model and using a cross-
validated model R2 (eFigure 2 and eTable 2 in the Supple-
ment). We found that 30 metabolites (plus age and sex) opti-
mized cross-validated model R2 (adjusted R2 = approximately
0.42). Both the full elastic net model (125 metabolites) and the
parsimonious model (30 metabolites) demonstrated calibra-
tion against the CM stress index in the BPRHS and were in
agreement with each other (Pearson r between models, 0.95;
P < .001; eFigure 3 in the Supplement). Across these 30 me-
tabolites, we observed a maximal imputation rate approxi-

Table 2. Characteristics of the BPRHS and ARIC Study Subsamples Included in This Analysis

Characteristica

BPRHS (n = 668) ARIC study (n = 2152)

No. Value No. Value
Age, mean (SD), y 668 57.0 (7.4) 2152 54.3 (5.7)

Female sex, No. (%) 668 491 (73.5) 2152 1213 (56.4)

African American race/ethnicity, No. (%) NA NA 2152 599 (27.8)

BMI, mean (SD) 668 32.0 (6.5) 2149 28.0 (5.5)

Waist circumference, mean (SD), cm 668 102 (15) 2148 98 (14)

Type 2 diabetes, No. (%) 668 345 (51.6) 2147 254 (11.8)

Hypertension, No. (%) 668 469 (70.2) 2142 805 (37.6)

Dyslipidemia, No. (%) 668 432 (64.7) 2134 1010 (47.3)

Prevalent cardiovascular disease, No. (%) 668 139 (20.8) 2094 269 (12.8)

Current smoker, No. (%) 668 151 (22.6) 2152 585 (27.2)

Blood pressure, mean (SD), mm Hg

Systolic 668 136 (19) 2152 122 (20)

Diastolic 668 81.5 (10.8) 2152 73.6 (11.7)

Lipid panel, mean (SD), mg/dL

Triglycerides 668 166 (129) 2146 136 (110)

High-density lipoprotein cholesterol 668 45 (13) 2146 52 (17)

Total cholesterol 668 185 (42) 2145 215 (42)

Glucose, mean (SD), mg/dL 668 119 (50) 2152 110 (42)

Hemoglobin A1c, mean (SD), % 667 7.0 (1.8) NA NA

CM stress index, mean (SD) 668 4.5 (1.9) NA NA

Abbreviations: ARIC, Atherosclerosis
Risk in Communities; BMI, body mass
index (calculated as weight in
kilograms divided by height in meters
squared); BPRHS, Boston Puerto
Rican Health Study; CM,
cardiometabolic; NA, not applicable.

SI conversion factors: To convert
triglycerides to millimoles per liter,
multiply by 0.0113; high-density
lipoprotein cholesterol and total
cholesterol to millimoles per liter,
multiply by 0.0259; glucose to
millimoles per liter, multiply by
0.0555; and hemoglobin A1c to
proportion of total hemoglobin,
multiply by 0.01.
a Hypertension and dyslipidemia

were defined as prescribed by
cutoffs used to generate the
cardiometabolic stress index.
Prevalent cardiovascular disease
was self-reported in the BPRHS and
was defined as prior evidence of
coronary heart disease, heart
failure, and stroke in ARIC. Type 2
diabetes is defined in the text.
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mately equal to 9% in the ARIC cohort, suggesting high ex-
pression of subselected metabolites in the ARIC study. We
evaluated the parsimonious model in the ARIC study (30
metabolites).

Association of Metabolite-Based CM Stress With Risk
for CHD and Mortality Over 30 Years
Over 30 years of follow-up, we identified 364 cases of inci-
dent CHD (16.9%) and 1113 deaths (51.7%) in the ARIC study; a
final analytic data set with full covariate availability for sur-
vival analysis included 1068 deaths (724 noncardiovascular)
and 282 incident CHD events (233 myocardial infarctions and
49 fatal CHD events). The results of survival analysis are shown
in Table 3 and Figure 2. We observed an adjusted 14% in-
creased hazard of CHD and 15% increased hazard of all-cause
mortality per SD of metabolomic CM stress (CHD: hazard ra-
tio, 1.14 [95% CI, 1.00-1.31]; all-cause mortality: hazard ratio,
1.15 [95% CI, 1.07-1.24]). Although we did not observe an ef-
fect modification of the association of CM stress with CHD by
sex, we did observe an effect modification of the association
of CM stress with mortality; increased metabolomic CM stress
was primarily associated with all-cause mortality in women
(per SD of metabolomic CM stress for women: hazard ratio, 1.26
[95% CI, 1.14-1.40]; per SD of metabolomic CM stress for men:
hazard ratio, 1.06 [95% CI, 0.96-1.18]; P = .01 for interaction),
perhaps reflecting the female predominance of the deriva-
tion cohort. In a sensitivity analysis including the Pooled
Cohort Equation score, we observed similar results (Table 3,
model 3). There were no improvements in reclassification or

discrimination via addition of metabolite-based CM stress score
to adjustment (Table 3, model 2).

Discussion
Our central aim was to understand the molecular basis for
CM stress and its association with long-term outcomes rel-
evant to CVD and longevity. In a cohort of Puerto Rican indi-
viduals with prevalent CMD, we identified 260 metabolites
associated with multisystem CM stress, independent of age,
sex, BMI, and smoking. Several metabolites had known
association with common pathways of aging, insulin resis-
tance, inflammation, and CVD (eg, glutamate,23 branched-
chain amino acids,24,25 2-aminoadipate,26 aconitate,27

ceramides,28 and sphingomyelins29). Mapping these empiri-
cal associations onto known enzymatic pathways impli-
cated known and novel genetic-metabolic networks in CMD.
We observed significant and modest associations between
the metabolite-based CM stress score and CHD and mortal-
ity over 30 years in ARIC, independent of CMD traits and
CVD risk factors. These findings demonstrate that metabo-
lites linked to CM stress identify important, key metabolic
pathway alterations in CMD and are associated with long-
term outcomes relevant to CVD for future molecular study.

A slowing in CVD improvement in the face of modern pre-
vention efforts has prompted studies on an associated role for
CMD.1 Cardiometabolic disease has classically been defined
through clinical component traits of metabolic syndrome (eg,

Figure 1. Pathway Analyses
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pro-atherogenic dyslipidemia, visceral adiposity, hyperten-
sion, and dysglycemia). Although this construct has been help-
ful in epidemiology and prevention efforts, its focus on end-
phenotypes of CMD limits its ability to resolve specific
mechanisms that underlie CMD. In this regard, genetic and epi-
genetic studies of large human populations have been con-

ducted to understand a potential basis for CMD. In seminal stud-
ies of the circulating metabolome in humans, shared metabolic
pathways have been associated with components of CMD, in-
cluding physical activity, insulin resistance, and obesity (eg, fatty
acids, branched-chain amino acids, and Krebs cycle). Neverthe-
less, most of these studies have focused on single components

Table 3. Multivariable Survival Analysis in the Atherosclerosis Risk in Communities Studya

Metabolomic risk
(HR per SD increase
in CM stress)

No. (No. of
events) HR (95% CI) P value C (95% CI)b ΔC (95% CI)b NRI (95% CI)b IDI (95% CI)b

CHDc

Model 1 1947 (282) 1.40 (1.24 to
1.58)

<.001 0.656 (0.621 to
0.691)

0.029 (0.005 to
0.054)

0.142 (0.036 to
0.241)

0.027 (0.011 to
0.048)

Model 2 1947 (282) 1.14 (1.00 to
1.31)

.045 0.738 (0.704 to
0.772)

0.001 (−0.004 to
0.006)

0.121 (0.024 to
0.230)

0.010 (0.002 to
0.027)

Model 3 1947 (282) 1.13 (1.00 to
1.28)

.05 0.715 (0.681 to
0.750)

0.002 (−0.004 to
0.008)

−0.007 (−0.124
to 0.104)

0.003 (−0.001 to
0.011)

All-cause mortality

Model 1 2076 (1068) 1.33 (1.24 to
1.41)

<.001 0.685 (0.670 to
0.701)

0.020 (0.011 to
0.028)

0.140 (0.071 to
0.209)

0.029 (0.015 to
0.043)

Model 2 2076 (1068) 1.15 (1.07 to
1.24)

<.001 0.734 (0.720 to
0.749)

0.003 (0.000 to
0.006)

0.046 (−0.043 to
0.122)

0.005 (0.000 to
0.012)

Abbreviations: CHD, coronary heart disease; CM, cardiometabolic; HR, hazard
ratio; IDI, integrated discrimination improvement; NRI, net reclassification index.
a Adjustments: model 1: age, sex, and race/ethnicity adjusted for center; model

2: model 1 plus smoking, systolic blood pressure, use of medications for
hypertension, type 2 diabetes status, total cholesterol, high-density
lipoprotein cholesterol, and estimated glomerular filtration rate for incident
CHD analysis; all-cause mortality analysis was further adjusted for body mass

index and prevalent cardiovascular disease; and model 3: for CHD only;
adjusted for center, sex, and Pooled Cohort Equation.

b The C statistics and NRI and IDI are computed in reference to models without
the CM score added vs those with the CM score added.

c Analyses for incident CHD excluded individuals with prevalent CHD at baseline
(accounting for the difference in number of individuals per regression).

Figure 2. Unadjusted Kaplan-Meier Survival Curves by Quartiles of Cardiometabolic Stress Index in the Atherosclerosis Risk in Communities Study
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of CMD for discovery and do not forge a link between metabo-
lomic signatures of CMD with CVD, a need in therapeutic dis-
covery efforts.

Here, we studied a validated CM stress index to explore the
molecular basis for CMD and its association with CVD. The in-
dex used in this study incorporates components of a traditional
metabolic syndrome as well as systemic inflammation, adre-
nal, and sympathetic nervous system activity markers of CM
stress. Several metabolites uncovered in this study have been
previously linked to CMD and CVD, increasing confidence in their
reproducibility (eg, glutamate). We also identified several novel
molecules associated with CM stress not previously widely re-
ported, to our knowledge (eg, phospholipids, sphingomyelins,
and amino acid derivatives). More important, the integrative ge-
netic-metabolic network methods used here suggest that these
CM stress–related metabolites may link CMD to central mecha-
nisms of CVD and health. For example, Ras signaling plays a well-
established role in CMD, regulating central components of me-
tabolism integral to nutrient processing, insulin resistance, and
myocardial hypertrophy (eg, AMPK [5′ adenosine monophos-
phate-activated protein kinase] and mTOR [mammalian target
of rapamycin]).30-33 In addition, Nrf2 has been implicated in
CMD34 and aging and longevity35,36 and regulates many genes
involved in oxidative stress, inflammation, drug conjugation and
detoxification, and mitochondrial biogenesis.37 Eicosanoids—
central mediators of initiation and resolution of inflammation—
also emerged from these studies as linked to stress. Several me-
tabolites associated with CM stress in this study have been
previously modified to ameliorate mechanisms of CVD: supple-
mentation of taurine and arginine (higher levels associated with
lower CM stress) may improve endothelial function, inflamma-
tion, oxidative stress, and atherogenesis.38-40 Some metabo-
lites may be associated with dietary exposures,41 suggesting the
potential for nutritional interventions.

Limitations
This study has some limitations. The results of this study
should be viewed in the context of its design. The effect size

of the metabolite-based CM stress score for CHD and mortal-
ity was smaller relative to other protein-based markers that
are closer to disease (eg, high-sensitivity troponin42), which
may limit direct clinical translation. We limited the metabo-
lites included and used a priori–defined imputation, which
may introduce biased regression estimates, although restric-
tion of metabolites expressed in most participants mitigates
this risk. Second, the subset of overlapping metabolites was
limited between the BPRHS and the ARIC study, which may
have led to submaximal model performance. Our results are
based on 2 different observational studies (the BPRHS and
the ARIC study) with disparate prevalent CMD and racial
composition and residual confounding (eg, cancer and HIV
infection in the BPRHS), and the use of a CM stress score (as
opposed to its metabolic components) may limit discovery
for each individual parameter of the score. Further studies in
large composite cohorts should be performed to address
imputation, unannotated metabolite significance, confound-
ing, and different end points (eg, cancer or diabetes). Third,
while these studies only accessed circulating metabolites
(limiting the ability to infer a direct cellular role), there are
many examples of circulating metabolite–based mechanistic
discoveries that begin in clinical observation.43-45 Pathway
analysis remains a strictly exploratory method, with continu-
ous updating of annotated metabolite-gene databases that
may improve mapping and candidate pathway identification
for mechanistic study.

Conclusions
Metabolite signatures linked to CM stress specify known and
novel pathways and are linked to CVD and all-cause mortality
at a 30-year horizon. These findings provide evidence of the
shared metabolic underpinnings of CMD and CVD, indicate
novel loci for mechanistic investigation, and highlight the
role of metabolic characterization in human studies in the
targeting and prevention of CVD.
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